
Population Dynamics Models 
 
We will start by examining the dynamics of a single species. Populations do not, generally, only 
grow by colonization or die to extinction. Instead, they tend to oscillate somewhere above levels 
which risk extinction and that at which their habitat would be destroyed. 
 
In general, the goals of population ecology are: 
 
 1) Quantify the rates of birth, death immigration, and emigration. 
 2) Use this information to explain what is influencing the timing and magnitude of these 

fluctuations. 
 3) Alter the mean level of these fluctuations. 
 4) Prevent over exploitation and extinction. 
 
Most information of this nature is about pest insect populations because of monetary and lifespan 
reasons. There is also limited harvesting information. We will concentrate on theoretical 
(laboratory) growth rates. Population dynamics models are usually created by starting with a 
very simple model and adding additional features, as necessary.  
 
Two classes of basic growth models are used depending on the ecology: 
 
 1) Organisms with overlapping generations 
  Examples: Humans, Bacteria, Protozoans, Birds, Mammals, Trees, and Some Insects. 
 
 2) Organisms having discrete generations. 
  Examples: Moths & Butterflies in temperate regions in which eggs are laid by females 

in phase, Caterpillars hatch. . . Eggs are laid only by new generation. 
 
Exponential Growth 
 
One can combine the birth and death rates into a single value. This is the effective growth rate of 
the population. Under these conditions the equation for the population growth is: 
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dN

dt
= r •N  

 
Where: N = the number of individuals in the population 
 t = time 
 r = intrinsic rate of natural increase 
  = birth rate - death rate under fixed conditions 
 
The coefficient “r” is a function of: 
 
 1) Reproductive delay 
 2) Distribution of progeny during the organism’s lifespan 
 3) Length of life 



   etc. 
 

[1] 
 
Increased values of r give a reproductive advantage and can be used to rank plant and pest 
species. For example, an examination of the reproduction of three species of aphids on 20 
relatives of the broad bean (Vicia) yielded r ranging from 0 to 0.30, suggesting directions for 
breeding resistance. 
 
If No occurs at to, this equation can be integrated to yield 
 
 Nt = No er t 
 
This exponential growth is known as “Malthusian Growth” after Thomas Malthus (b. 1766; d. 
1834). His “Essay on the Principle of Population” predicted disaster noting that, unless offset by 
war or disease, the world population grows at an exponential rate (doubling every 25 years) 
while food supply grows linearly. The Simulink model is shown below [2]. 
 



  
Where: N = 2 (initially) 
 r = 0.1 
 
Note the presence of the positive feedback loop. A system containing this type of feedback is 
almost always unstable. The model was build from the equation by assembling dN/dt 
graphically. Note the presence of the feedback loop. Running the model results in the following 
plots from the scope. 
 

  
 
Note that the upper input, and hence the upper plot, is the growth rate of the population. The 
lower plot is the actual population size. 
 
The results of this equation can be linearized by taking the natural log of both sides to yield 
 
 ln Nt = ln No + r t 
 
Therefore, if one has raw data of population versus time, one can plot the log of the population 
number versus time and use linear regression to obtain a value for “r”. 
 
Logistic Growth  
As you know, populations do not expand exponentially forever. There is a limit to the number of 
individuals that a space can support. In population dynamics this limit is known as “k”, the 



carrying capacity. In logistic growth, the rate of growth is reduced based on the space available 
for individuals. This is performed by including the following term in the growth rate: 
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Where: k = the carrying capacity of the ecosystem 
 
 
 
Note that for the case N << k, this term is essentially 1, yielding an exponential growth rate. 
However, when N = k, this term becomes 0, eliminating any further population growth. When 
this term is included in the population equation, it becomes 
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[1] 
 
In integral form this equation becomes 
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Where: a  = Defines the inflect point of the curve 
 
When this model is implemented in Simulink (once again, building the equation as an input into 
dN/dt) we get: 



  
 
Where: N = 2 (initially) 
 r = 0.1 
 k = 100 
 
The output scopes are: 
 

  
 
The upper output is the rate of growth for the population, while the lower curve is the total 
number if individuals in the population. The shape of lower curve is known as a “logistic” curve.  
 
Variable Carrying Capacity 
The above simulation is still somewhat limited, since the carrying capacity of an ecosystem is 
not a constant. Instead, there is a periodic variability in the carrying capacity throughout the year.  
 
Note that if: N > k carrying capacity is exceeded and the population decreases. 
 N < k population increases. 
 N = k population is stable. 



 
The extent to which the population follows depends on the “Population’s Response Time” = 1/r. 
 
One way to implement this variability in the Simulink model is to add a sine component to k. 
This has been done in the model below: 
 

  
where: k = 100 + 10•sine (2•π•t) 
 
This results in a final equation for the logistic growth curve of: 
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To get a correct output from this model, you will need to use a stiff equation solver and reduce 
the relative tolerance to 1e-6. An extra input has been added to the scope to display the value of 
k. The outputs shown on the scope (from top to bottom) are dn/dt, N, and k. This is shown 
below: 



  
 
As you might expect, during the early (exponential) phase of growth, the population is 
unaffected by the variability in the carrying capacity. However, one the population is near the 
carrying capacity it oscillates at the same frequency as the carrying capacity, with some of the 
population dying off. 



Population Dynamics Models II 
 
 
Density dependence is not usually instantaneous. Due or organism generation time or 
environmental recovery. This can be expressed as the equation: 
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Where:  T  = Time lag 
 
The systems response varies as a function of (T, 1/r) as is shown in Figure 7.6. 
 
The time lag term can be combined into the existing logistic growth with variable carrying 
capacity to yield 
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This is why we use numerical integration routines 
 
Discrete Generations 
 
Generally, these models are framed as difference equations. Time is a discrete variable. 
 
 N(t+1) = F(Nt) 
 
 Nt+1 = λ • Nt 
 
The difference equation equivalent of  
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dN

dt
= r •N  

 
Then, the number of individuals at time t 
 
 N@t = λt • No 
 
Where: λ = Finite rate of increase 
 t = Number of times the population multiplies itself/generation 
 
 r = ln λ 
 
This equation also results in geometric growth. 
 



If one then allows the equivalence of a carrying capacity: 
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Based on this equation a wide range of theoretical patterns are possible. See Figure 13.1[1] for 
some possibilities. 
 

 
 
What is wrong with these equations? 
 
 1) Ignores competitors. 
 2) Ignores predators. 
 3) Ignores abiotic environment. 
 4) Ignores interactions between populations in community. 
 5) Ignores age effects in the population. 
 



Life Table Approach 
 
 1) Used only for overlapping generations. 
 2) Contains age distribution information. 
 3) Used most effectively for a relatively constant population. 
 4) Requires mortality information. 
 
Start by defining a pivotal age group size. 
 
e.g. Man - 10 Years 
 Insects - Days or Weeks 
 Bacteria - Hours 
 
Tradition requires starting at 1000 or normalizing to 1000 initial population. 
 
Death rates are determined either by aging a sample population or by studying remains. The 
latter method is more subject to sampling bias. 
 

A Hypothetical Time-Specific Life Table.[1] 
x lx  log lx dx  qx  ex  Lx  Tx  
1 1000 3.0 550 550 1.21 725 1210 
2 450 2.7 250 556 1.08 325 485 
3 200 2.3 150 750 0.80 125 160 
4 50 1.7 40 800 0.70 30 35 
5 10 1.0 10 1000 0.50 5 5 

 
Where: x = Pivotal age class 
 lx = Number of the 1000 surviving at start of age class 
 dx = Number dying during interval 
 qx = (fraction dying) x 1000 
   e.g. at start of age class 2 , qx = (250/450) x 100 
 Lx = Average number of individuals between age x and age x+1 (i.e. Lx = (lx + 

lx+1)/2) 
 Tx = Total number of individuals of aged x and beyond (determined by adding 

midpoints from bottom up to point) 
 ex = Life expectancy for individuals attaining age x 
  = Tx/lx 
 
You can obtain a visual representation by plotting lx or x. However plotting log10 lx vs x. This 
yields information as to how survival rate changes. In this case the same proportion of the 
organisms die each year.  
 

Survivorship data showing a constant death rate. 
lx log lx dx 

1000 3.0 300 
500 2.7 250 
250 2.4 125 



125 2.1 63 
63 1.8  

 
When plotted, this data looks like [1]: 
 
 
 
 
 
 
 
 

Organisms may be ecologically classified, as either: 
 
“r-Selected”  - Exploits short duration habitats. Maximizes r while staying below k. Density 

dependence is low. 
 
“k-Selected”  - Relatively low reproduction rate. Density dependence is important in 

population processes. 
 
This classification is based on their approach to survival of the species. r – selected organisms 
count on rapidly responding to a favorable environmental change by rapidly producing large 
numbers of young. Because of the large numbers of young parental care is not possible and large 
numbers of offspring die. In the case of k – selected organisms, only a few young are produced, 
but there is significant parental involvement in the child rearing process. 
 
If the numbers of individuals is plotted as a function of age, the result is known as a 
“survivorship” curve. There are three major classes of survivorship curves [1]. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Type l Curve  - Mammals, K-Selected, Exhibit parental care 
  - Mountain Sheep 
 
Type 2 Curve  - Constant Survivorship 
  - Lapwing 
  - Obtained from banded birds 
  - Omits infant mortality 
  - Reality is between types 2 and 3 
  - Die before they are old 
 
Type 3 Curve  - r-Selected Organisms 
  - Insects, Fish, Parasites, Annual Plants 
  - Leech 
 
One must be careful in expecting these sorts of curves. In the lapwing curve in 7.8a [1], the 
results are for banded birds only, eliminating the higher death rate of chicks. In the figure below 
(7.9)[1], the age structure has been broken by environmental factors. In this case, lump is due to 
severe winter storms clearing mussels off of rocks. This provided space for settling of a large 
number of spat. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Competition 
 
When 2 organisms occupy the same ecological niche, they influence each other through 
competition. In general there are two types of competition: 
 

1. Intraspecific Competition - Same species 
2. Interspecific Competition - Different species 

 
Competitors must require the same resource and that resource must be limiting or potentially 
limiting. If this is not the case, then there is no competition. Competition occurs by either or both 
of the following: 
 
Interference Competition - Direct interactions of competitors for the same resource, thus 

interfering with each other’s uninterrupted access to and use of that 
resource; e.g. plants & space or light. 

 
Exploitation Competition - One individual affects another’s uninterrupted use of a resource 

through prior exploitation. Competitors do not meet, but use by 
one diminishes the amount of the resource available for the other. 

 
Use of one resource by ‘A’ that affects the use of another by ‘B’ that is not used by ‘A’ is not 
competition. 
 
In general, intraspecific competition leads to diversity/variation in the population and ‘broadens’ 
the niche occupied. This may lead to new species. 
 
Both inter- and intraspecific competition are mechanisms used to regulate population size. 
 
Intense interspecific competition results in: 1) Extinction of one competitor or 2) Movement of 
one competitor into a new niche. 



 
Remember that 
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for organisms with overlapping generations. In this equation, much of what we are compensating 
for is intraspecies competition. 
 
In the case of interspecies competition, we must compensate for the effects of the second species. 
This requires the inclusion of an additional term (for Species 2 or Species 1). This term needs to: 
 
 1) be negative in sign, 
 2) include the carrying capacity for Species 1, and 
 3) include a competition coefficient α1,2 
 
The equation then becomes 
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 Geometric Effect of Effect of 
 Growth Species l Species 2 on 
  on itself Species 1 
 
Note the labeling of the components of the equation. 
 
Similarly for Species 2 
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α1,2 and α2,1 are reflections of the degree to which growth is restricted. 
 
In the case of these equations, they can only be implemented as a pair in Simulink. This is 
because, when they are assembled the “N” term from the other model must be included. The 
easiest way to build the model is to build the first equation, do a copy and paste, and link the two 
equations. This can be done using “subsystems.” The subsystem block is shown below: 
 

 [3] 



When this block is opened, an inport and an outport block are visible with a signal between 
them. 
 

  
 
Build the model for each species between the blocks as shown below: 
 

  
 
If you close the subsystem block, you can copy and paste it in the top level of your model. The 
models for the two species are then connected as shown: 
 

  
 
The population model for the second species will need to be opened and the constants changed to 
those for the second species. In the simulation below, species one has out competed species 2. 
 



  
 
This approach of using subsystems presents several advantages. First, it is easier to see the 
relationships between the two species. Second, as was performed in this model, it is east to cut 
and paste additional modules into the model. Finally, a model containing multiple subsystems 
can be easily upgraded as additional information is available, by simply replacing the appropriate 
subsystem. 
 
Note that a term (and an appropriately configured subsystem) can be added for each additional 
competing species, i.e. 
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Additional terms may be added for each resource under competition. 
 
Also note that the sign on the “Competition” term may be altered 
 
 -,- Competition 
 -,+ Parasitism 
 +,+ Mutualism, Symbiosis 
 +,0 Use of one organism as the host for another 
 -,0 Incidental damage, e.g. trampling of plants 
 
It has been said that 2 species with the same ecologies (or niche) can not coexist in the same 
environment. Theory, however, gives two possibilities. These possibilities are shown below: 
 



 
 
In general, this is true as shown in Figure 6.5.  
 

 
 
In some cases this is not true, as shown in Figure 6.7. 
 



 
 
The outcome is dependent on: 
 
 A) Initial population densities 
 B) Environmental conditions 
 C) Genetic constitution of the strains of the competing species. 
 
An example of (B) considering 
 
 Drosophila pseudo obscura 
 Drosophila serrata 
 
At 23oC the 2 species exist in competition. 
At 25oC D. serrata out competes D pseudo obscura. 
At 22oC D. pseudo obscura wins. 
 
Competition may also exist in a “patchy” environment where spatial heterogeneity gives each of 
2 species a local advantage in an area. The victor is also a function of the period by which the 
environment favors one organism over another (where time is in terms of generational length). 
 
Some of these possibilities are shown in Figure 6.8. 
 



 
 
Note also that competition does not need to be direct. (Indirect competition)) 
 
e.g. 2 Species which do not occupy the same dietary niche may share a predator. If one species 

becomes scarce the predator may switch species. 
 
e.g. 2 predatory species which do not eat the same prey, but whose prey species compete. If one 

prey species outcompetes the other, the predators will be affected. 
 
Interspecific Competition in Natural Systems 
 
Reynoldson and Bellamy (1970) established a set of criteria for establishing the existence of 
competition in the field. 
 
1. The comparative distribution and/or relative abundance of the two potentially competing 

species should be amenable to explanation based on competition. 
 
2. It is necessary to show that the competing species are utilizing a common resource that may 

provide the basis of competition. 
 
3. There should be evidence from the performance of the particular species populations in the 

field that intraspecific competition is occurring. This may relate to fecundity, survival 
growth rate of individuals or some other appropriate parameter. This criterion assumes that 



if persistent interspecific competition is occurring then intraspecific competition must also 
be taking place. 

 
4. Both the resource which is being competed for and the population should be manipulated 

separately in the field with predictable results based on the hypothesis that competition is 
occurring. It is insufficient to manipulate only the absolute amounts of a resource since its 
availability may be altered irrespective of the competition process. For example, many 
populations are likely to respond to an increase in food whether or not competition is 
occurring because the same amount (or more) may be obtained with less expenditure of 
energy. 

 
5. Events following the introduction or removal (or reduction) of a competing species should 

be consistent with the competition hypothesis. This criterion differs from criterion 4 since it 
concerns interspecific events only. Criteria 4 and 5 are clearly the most crucial to observe: 
results or criterion 5 enable the empirical determination of the competition coefficients α. 
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