ENGINEERING DESIGN CHALLENGE: BIOMEDICAL ENGINEERING DESIGN PAUL SCHREUDERS

Scenario

Dr. Mordecai Fleam, the president of Ermine Biomedical Solutions (EBS), has asked your class to develop new products involving the fixation of broken arms. In general, the medical solution to this injury is some sort of fixation, either external (such as a cast or a splint) or internal (such as a stainless steel plate). Since EBS already has a product line for internal fixation, Dr. Fleam would like to expand EBS's product line into the external fixation market. They have asked your class to develop a line of prototypes for their consideration.

- The class will be broken into teams of 3-4 students, with each team generating a potential product. Team projects can fall into one of three categories.
- Improve an existing product (e.g. a new material for the cast)
- Develop a product that makes living with a cast better (e.g. an arm scratcher for inside the cast)
- Develop a product to improve the survivability of the existing designs

Ermine Biomedical will provide a test "arm" for you to use in the development process. This arm has a built in break that you will have to immobilize with your device.

Since your class will be acting as consultants, EBS has requested that you follow the 7-stage engineering design process and document your process as you go in your design notebooks. In addition, you will need to write a short memo to Dr. Fleam every Friday to keep him informed of your progress. At the end of the project, you will present Dr. Fleam with a your design portfolio.

Goals and Outcomes

The overall emphasis in this case study is the engineering design process. This process will be explained using the example of a biomedical engineering problem, a product to be used with broken arms.

- a) Identification of the qualities of a good design
 - i) Students will be asked to identify the general qualities of good design.
 - ii) Students will be asked to identify how these qualities are applied to their design.
- b) Develop an understanding of the engineering design process
 - i) Students will follow a 7-stage engineering design process
 - ii) Students will document their design process in a design notebook
 - iii) Students will be asked to reflect on each stage of the design process and as a final step will be asked to evaluate their process and recommend improvements

- c) Understanding of the relationship between humans and engineering devices.
 - i) Students will be exposed to medical product design including factor such as comfort, usability, and durability.
 - ii) Students will relate personal and associates experience to the development of engineering design criteria.
 - iii) Students will be exposed to the wound healing process.

Discussion of Constraints (Limits)

Before beginning the design, discuss the qualities of good design. The students will need to create a list of the qualities of good design, in general, and how they apply to this projects specifically. A partial list of good qualities is listed below.

- Functionality Does the device perform the desired function? Does it fit inside the cast? Does it provide relief from the itch?
- Quality Is the device of an appropriate quality? Does it look good? Can you produce it repeatable? Will it last as long as the user is in the cast?
- Safety Is the device safe to use? This includes use in unexpected way or by someone who is poorly trained? Ask your students to consider the items in the classroom that they have used in an unexpected way (e.g. using a pencil to scratch an itch that they cannot reach). Children possess most of the broken arms. How would these factors alter their design?
- Ergonomics (user friendly). Does the device fit into the available space? Is it easy to hold and use? Is it comfortable to use?
- Appearance Does it look attractive? Does it look well made? Would you want one?
- Environmental Considerations *Is you device made using an environmentally safe process? Everything that you purchase will one day be thrown away. Is your device recyclable?*
- Societally Appropriate Does the design match the audience? A design that is appropriate for a 5 year old may look silly when used by a grandmother. A design for vegetarians shouldn't have a leather strap.
- Economics Can people afford to buy it? Can we afford to build it? Can we afford to sell it for a reasonable price and still make a profit?
- Manufacturability and Maintainability Can we build it with the equipment and materials that are available? Can it be fixed if it breaks?

Rank these qualities in order of importance. The designers need to understand that some of these qualities are more important than others. Some qualities of good design, in general, may not be relevant to this design, in particular. In addition, some qualities will act in opposition to each other. For example, increasing the durability of a cast may make it harder to remove when the arm is healed. Alternately, improving the appearance of a cast is likely to make it more expensive.

Social/Cultural Context

Biomedical engineering is on of the fastest growing engineering disciplines. With America's population aging its medical needs will continue to grow. Biomedical engineers need to consider, not just engineering design requirements, but also the relationship that their design will have with the human body.

Virtually everyone either has broken a bone or knows someone who has done so, usually involving a quick trip to the emergency room. In children, 40 -50% of all fractures involve the forearm. Fortunately, children's bones heal more quickly than the bones of an adult.

General Classroom Guidelines

This case study is aimed at teaching engineering design as a process. As such, the emphasis is on fostering creativity and structured methodology. The case study is specifically *not* to have a single outcome. Instead the design teams should be given maximum freedom in their solutions. The design constrains are in the attached letter from the fabricated "Dr. Fleam" from "Ermine Biomedical Systems."

No special facility requirements are needed to complete this engineering challenge. Passing the general safety test and other equipment-specific safety tests is required for participation in the research and development process and in the implementation part of the assignment. Materials safety data sheets should be available for all materials used in this case study.

It is estimated that this engineering challenge would take fifteen, fifty-minute class periods to complete.

Key Engineering Concepts

The key technological concepts that an engineering design team should be familiar with during and at the completion of this engineering challenge consist of:

- Standard 8. Students will develop an understanding of the attributes of design.
- Standard 9. Students will develop an understanding of engineering design.
- Standard 10. Students will develop an understanding of the role of troubleshooting, research and development, invention and innovation, and experimentation in problem solving.
- Standard 11. Students will develop abilities to apply the design process.
- Standard 13. Students will develop abilities to assess the impact of products and systems.
- Standard 14. Students will develop an understanding of and be able to select and use medical technologies.

Key Mathematics/Science Tools and Concepts

National Science Content Standards

Science and Technology – Content Standard E:

As a result of activities in grades 5-8, all students should develop:

• Abilities of technological design

• Understandings about science and technology

As a result of their activities in grades 9-12, all students should develop:

• Abilities of technological design

Science in Personal and Social Perspectives – Content Standard F:

As a result of activities in grades 5-8, all students should develop an understanding of:

- Personal health
- Natural hazards
- Risks and benefits

As a result of their activities in grades 9-12, all students should develop understanding of:

- Personal and community health
- Natural and human-induced hazards

Assessment

See Attached Rubric

Reflective Analysis

Engineering design is both a team activity and an inherently recursive process. Virtually every item that we see has gone through many design cycles. In each cycle, the design is improved and the design process gets better. Reflect on the process that has just been completed, examining the following three elements:

- People
- Process
- Product

As a team, write a reflective analysis of the engineering design process. Specifically, examine the roles and challenges for each of the above elements. This reflection should answer the following questions:

- What did we do right? (How do we do it again?)
- What did we do wrong? (How do we stop from making the same mistake again?)
- Examining the above questions, how can we improve what we did?

Biomedical Engineering and Biomaterials Evaluation Rubric

Objectives	Below Standard	At Standard	Above Standard	Specific Comments
Understands and	There were one or more	There is evidence that	There is explicit evidence	
is capable of	important criteria for	the product met the crite-	that the product met the	
identifying good	good design omitted	ria for good design	criteria for good design	
design				
Followed the	There were steps left out	There is evidence that	There is explicit evidence	
engineering de-	that turned out to be im-	the process was fol-	that the process was fol-	
sign process.	portant.	lowed.	lowed.	
Identified and	One or more special ac-	No special accommoda-	The solution worked as	
met the design	commodation had to be	tion had to be made in	close to a real-life imple-	
constraints and	made in the laboratory to	the laboratory to get the	mentation as feasible in	
limitations	get the solution to work.	solution to work.	the laboratory.	
Performed ap-	Little or no background	Background research is	Extensive background	
propriate	research is evident in the	evident in the memos	research is evident in the	
background	memos and design port-	and design portfolio	memos and design portfo-	
research	folio		lio	
Understands the	Minimal evidence is	Evidence is present of	Evidence is present of	
role of and	present of brainstorming/	brainstorming/ no evi-	extensive brainstorming	
methods for	evidence exists of coun-	dence exists of	and this is explicitly	
brainstorming	terproductive activity	counterproductive activ-	documented in the portfo-	
		ity	lio.	
Analyzes and	Minimal evidence is	Evidence is present of	Evidence is present of the	
refines potential	present of the analysis	the analysis and refine-	analysis and refinement of	
solutions	and refinement of the	ment of the potential	the potential designs and	
	potential designs	designs	this is explicitly docu-	
		e	mented in the portfolio.	
Creates and	There is little evidence	It is evident that multiple	It is evident that multiple	
examines multi-	that multiple solutions	solutions were consid-	solutions were considered.	
ple solutions for	were considered.	ered	and this is explicitly	
the design			documented in the portfo-	
8			lio.	
Develops and	Test model of a single	Test models of 2-3 de-	Test models of 2-3 designs	
tests models for	design is presented	signs are presented	are presented and this is	
design		C 1	explicitly documented in	
0			the portfolio.	
Ability to impar-	There is little evidence of	It is evident that multiple	It is evident that multiple	
tially examine	an ability to examine	designs were examined	designs were examined in	
multiple designs	multiple designs and	in the process of choos-	the process of choosing a	
and choose a	choose a design to final-	ing a design to finalize.	design to finalize. A deci-	
design to final-	ize using a decision table.	A decision table was	sion table was used is	
ize.		used.	explicitly documented in	
			the portfolio.	
A final design	No design choice was	A design choice was	A design choice was made	
choice was made	made and an example of	made and an example of	and an example of the	
and an example	the product was not gen-	the product was gener-	product was generated.	
of the product	erated.	ated.	The product is well made	
was generated			and documented.	
Understands the	The student cannot de-	The student can describe	The student can describe	
need for and is	scribe the design and	the design and their cur-	the design and their cur-	
table to commu-	their current status in the	rent status in the design	rent status in the design	
nicate their	design process.	process	process and this is evident	
design			in the memos and design	
			portfolio.	
Fully docu-	The memos and portfolio	The memos and portfolio	The memos and portfolio	
mented the	reflect the general engi-	provide evidence of un-	document the specific	
process in the	neering design process.	derstanding for the	design process used to	
portfolio.		objectives stated above.	solve this problem.	

Objectives	Below Standard	At Standard	Above Standard	Specific Comments
Understanding of production requirements and intellectual property	Minimal evidence is present of production requirements and intel- lectual property	Evidence is present of production requirements and intellectual property	Evidence is present of production requirements and intellectual property and this is evident in the memos and design portfo- lio.	
Analysis of the engineering de- sign process and product	Minimal evidence is present of reflection of the process	Evidence is present of a post-process reflection.	Evidence is present of a post-process reflection and recommendations are made for improvement of their process and design in their portfolio.	
Comments:				